Channel Effect Compensation in OFDM System under Short CP Length Using Adaptive Filter in Wavelet Transform Domain
Authors
Abstract:
Channel estimation in communication systems is one of the most important issues that can reduce the error rate of sending and receiving information as much as possible. In this regard, estimation of OFDM-based wireless channels using known sub-carriers as pilot is of particular importance in frequency domain. In this paper, channel estimation under short cyclic prefix (CP) in OFDM system is considered. An adaptive algorithm based on the set-membership filtering algorithm is used to compensate for this problem. In short CP length, the per-tone equalization (PTEQ) structure is used to prevent inter-symbol interference (ISI). This structure has high computational complexity, so using the set-membership filtering idea with variable step size while reducing the average computation of the system can also increase the convergence speed of the estimates. On the other hand, utilizing the wavelet transform on the branch of this structure in each sub-carrier before applying adaptive filters will in turn increase the estimation speed. The simulation results show better performance than conventional adaptive algorithms. In addition, the estimation and compensation of the channel effect under short CP can be easily accomplished by this algorithm.
similar resources
Channel Estimation and CFO Compensation in OFDM System Using Adaptive Filters in Wavelet Transform Domain
Abstarct In this paper, combination of channel, receiver frequency-dependent IQ imbalance and carrier frequency offset estimation under short cyclic prefix (CP) length are considered in OFDM system. An adaptive algorithm based on the set-membership filtering (SMF) algorithm is used to compensate for these impairments. In short CP length, per-tone equalization (PTEQ) structure is used to avoid i...
full textThe Wavelet Transform-Domain LMS Adaptive Filter Algorithm with Variable Step-Size
The wavelet transform-domain least-mean square (WTDLMS) algorithm uses the self-orthogonalizing technique to improve the convergence performance of LMS. In WTDLMS algorithm, the trade-off between the steady-state error and the convergence rate is obtained by the fixed step-size. In this paper, the WTDLMS adaptive algorithm with variable step-size (VSS) is established. The step-size in each subf...
full textTime-Varying Frequency Fading Channel Tracking In OFDM-PLNC System, Using Kalman Filter
Physical-layer network coding (PLNC) has the ability to drastically improve the throughput of multi-source wireless communication systems. In this paper, we focus on the problem of channel tracking in a Decode-and-Forward (DF) OFDM PLNC system. We proposed a Kalman Filter-based algorithm for tracking the frequency/time fading channel in this system. Tracking of the channel is performed in the t...
full textAdaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform
In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...
full textAbrupt Change Detection in Power System Fault Analysis using Adaptive Whitening Filter and Wavelet Transform
This paper describes the application of the adaptive whitening filter and the wavelet transform used to detect the abrupt changes in the signals recorded during disturbances in the electrical power network in South Africa. Main focus has been to estimate exactly the time-instants of the changes in the signal model parameters during the pre-fault condition and following events like initiation of...
full textAn Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
full textMy Resources
Journal title
volume 8 issue 2
pages 290- 303
publication date 2019-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023